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Abstract

L RS )

- One model for the motion of n charged particles on the x-axls

leads to a system of delay differential equations with delays

dependent on the unknown trajectories. If appropriate past historles

of the trajectories are given, say on [a,0], then for sufficiently

small t > 0 one has a system of n2 ordinary differential equations

i

of the form
y' = £(t,y) with y(0) = Yo given. (*)

The function f, which involves the known past histories of the

AD AO88114

trajectories, is continuous; so existence of solutions 1s assured.

However, f does not satisfy the Lipschitz condition usually use

for proving uniqueness., <~ -b}sl
)
The key new result is that the solution of (%*) is unique IL‘V . o
~J ~ N\
provided, for some integer m < n2, Q ‘5’ ’ (1
£f,(t,8) <1 for 1 =1,...., m, and e :
2 ﬂi)
lee,6) - £(e,m ] <Kz 1Ba(E=8) - gy (b=ny )| +x I &y - nyl,
i= i1=m+l

where K > 0 1s constant and each g4 is a continuous function

of bounded. variation. 5
This generalized Lipschitz-type condition is indeed satisfied u

in the electrodynamics case. The m components of y which play

the special role in the above uniqueness criterion are the n(n-=1)

-

—

Eventually one finds that solutions of the original equations of

delays of the original n-body problem.
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motion exist and are unique as long as no two particles collide.
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Consider n charged particles on the x-axis; and assume that

each is influenced only by the retarded fields of the others, and

no two particles collide during the time considered,

Let xi(t) be thé“posi;ion of part;cle i »at'time t, and let
¢ be the speed of light. Then at time t particle J 1is influenced
by the electromagnetic fields which were produced by particle 1

(1 # j) at some earlier instant t - rij(t). The delay rij(t)
represents the time required for fields to propagate from particle

i to particle J and must satlsfy the functional equation
crij(t) = li(t) - xi(t - riJ(t))I. ) (l)
To shorten the notation, we will sometimes represent xJ(t) and
rij(t) by xJ and rij’ respectively. Then Eq. (1) becomes
eryy = |xJ - x,(t - riJ)I.
We shall also use the symbol
= z xi(t
vy vJ(t) xJ( )/c

for the velocity of particle Jj in units of c. [If t 1s an

L;i
i
iy

endpoint of the interval of definition of Xy then xj(t) is a

one-sided derivative.]

#This work sponsored in part by the Alr Force Office of Scientific
Research under Contract F49620-79-C-0129.

##Phis work sponsored in part by the U. S. Department of Energy
under Contract DE-ACOU4-T76DP00789.

+A U. 8. Department of Energy facility.
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The followlng theorem, proved in [1], 1ists some basic

properties of Eq. (1).

Theorem 1. Let x

M~ i

and xJ be given differentiable functions
with |xj(t)| < ¢ and lxj(t)l <c on [a,B), where a < 0 < 8,
and with xi(t) # xj(t) on [0,8). Assume Eq. (1) has a solution
when t = 0, (See Remark below.)

Then Eq. (1) has a unique solution for all ¢t € [0,8) and
(1) is equivalent to

eryy = oij[xj - xi(t - rij)]’ (1)
where

04y = sen [xJ(O) - x;(0)].
Moreover

ryy 2 |xJ - x4{/2c. |

Now assume, in addition, that vy = xi/c and vy = xj/c are
continuous. Then
Vy = vo(t - r,,)
R | i iJ .
i3 93y - Va8 -1y for 0 <w <. (2}

Conversely, if iy is a solution of (2) on [0,8) and if rij(O)

satisfies Eq. (1') at t = 0, then T4y satisfles (1') on
[O’B)l

Remarks. A sufficient condition to assure that Eq. (1) has

8 solution when t = 0 is
Ixi(t)l <c - IxJ(O) - x(0)}/Ja]  for a <t < 0.
Note from (2) that d(t - rij)/dt >0, So ¢t - rij(t) is

an increasing function of t. In particular, if 8 < =, then

lim ,o_ rij(t) exists,




After these preliminarles, we obtain the actual equation of
motion for particle J as follows. Assume Eq. (1) has a unique
solution for each 1 # J, sum the retarded fields produced by
all other particles (1 # j), and substitute these filelds

into the Lorentz-Abraham force law for particle Jj. The result

is
vi - ; E%l oy  * vy (t - rii) , | (3)
(1 - VJ) 1#3 1y 1y vi(t - rij)

where each Kij is a constant.

The "natural" initial data problem for the system of functional

differential equations represented by (1) and (3) is as follows.

PO

Problem P. Let continuously differentlable functions ¢1, sesp
be given on an interval [a,0] with the properties that each
|¢i(t)| <ec on [a,0] and ¢,(0) # ¢j(0) when 1 # j. A solution
of Problem P will be a set of continuously differentiable functions
Xys «ee5 X, ON [a,B) for some B > 0 such that

(a) xi(t) = ¢1(t) on [a,0] for each 1, . ?

(b) xi(t)#xj(t) on [0,8) when {1 #J,

(¢) |vy(t)| <1 on [0,8) for 2ach 1, where v, = xj/c, % <
4
(d)‘ there exists a set of functions {rij}i#j on [0,8) }
such that Egqs. (1) and (3) are satisfied on [0,8). g

As yet, we have made no assumption that the "initial

trajectories", ¢l, ceay ¢n, satisfy any particular equations.

In the context of the functional differentlal equations
presented here, it will be quite natural to assume that enough

appropriate initial data 1is glven so that each Eq. (1) has a
solution at t = 0 when 1 # jJ.

(This assumption was eliminated
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in the two-body problem by Travis [6].)

The questlon 1s, do we need further smoothness conditions on
¢i in order to establish the existence and uniqueness of a
solution of Problem P?

When thls problem was originally treated for the case of two
particles, 1t was assumed that each ¢i was Lipschitz continuous
[1]. But later consideration of the problem in three dimensions
~--involving equations of neutral type--suggested that this was an
unreasonable hypothesis [2]. It seemed more realistic to require

each ¢i to be just absolutely continuous.

For the collinear motion of two particles, mere continuity of
each ¢i turned out to be adequate [4]. Then, for the case of two
particles moving in three dimensions 1t was found that absolute

continuity 1s sufficient for local existence and uniqueness [3].

However, the proofs used in [4] and [3] do not extend to the

case n > 3,

To resolve this difficulty the following uniqueness theorem

for ordinary differential equations has recently been proved [5].

Theorem 2. The system of p equatilons

y' = £(t,y) with y(0) =y,
has a unique solution (locally) 1f, in some neighborhood of (O,yo)
in R1+p, f 1s continuous and for some integer m € [0,p]

fi(t,s) < 1 for 1 =1, ..., m
and f satisfies the generalized Lipschitz-type condition

m

H£Ce,8) = fCem] <X T |gy(t-g)) - gy (t-n)| + Ki‘Eﬂlz1
where ||+|| 18 any norm in RP, K > 0 1s a constant, and each

g4: R+ R 1s continuous and is of bounded variation on bounded
subintervals.

= nil’




The theorem proved in [5] is actually more general, but the
special case above will suffice for our present purpose.

The following (main) theorem says that the collinear n-body
problem does have a unique solution (until a collision occurs) even
assuming only absolutely continuous initial velocities--or slightly

less.

Theorem 3. Let ¢,, ..., ¢ be given functions on [a,0]
1 n

LR e ]

with each ¢i continuous and of bounded variation. Assume that

(1) ¢,(0) # ¢,(0) when J # 1,
(11) |¢i(t)| <¢ on [a,0] for each i, and

(111) Eq. (1) has a solution r{ (0) at ¢t =0 for each 1 and J # i.

J

Then there exists 8 > 0 such that Problem P has a unique solution

N NP WL

on {[a,8), and either B = +o or else for some 1 and J # 1

1im xJ(t) = 1im xi(t) -~ a collision.
t+8- t+8-

ERTRE R NN

Proof. For economy of notation, let r represent the n(n-1)-

vector~valued function with components riJ‘

i
:
£
‘3
i
¥
&
3
kJ
=3
4

Note that the last paragraph of Theorem 1 essentially lets us
consider Eqs. (2) and (3) in place of (1) and (3). The solutions
of Eqs. (2) and (3) which will be of interest must satisfy

(B, Ty Vyy ooy v,) € D, where
D=R X (o’w)n(n—l) X (-l,l)nc Rl+n2.
At first consider the open subset
U = {(t’ E) € D. t - Ei < 0 fOl" 1 = 1’ s e 0y n(n-l)
Note that (0, r'(O), 1(0)/0, ceey ¢;1(0)/c) é U.

I i o e . ey L g
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Now define By = ¢j/c for each 1 and J # 1. Then in U

Egs. (2) and (3) are equivalent to the ordinary differential equaticns

- AXJ - gil(t - Pij)

r; (4)
13 oij = Sij(t - rij)
and
v! K. 0.. + g..(t - r,.)
J - ijJ “ij
- v2)3/§" ) z li(t lJ) ’ (5)
J 1#j T13 %13 ~ Biglt T Tij

and the initial conditions are rij(o) = rij(o), VJ(O) = ¢3(0)/c.
Local existence and uniqueness of a solution, say for 0 <t < h,
follow from Theorem 2 with p = n° and m = n(n-1). We have

thus generated the unique solution of Egqs. (2) and (3) on [0, h).
Now let

¢i(t) on [, 0]
xi(t) = £
¢;(0) + S5 cvy(s) ds  on [0, h).

Then the resulting functions Xy5 ..+ X, form the unique solution
of Problem P on [a,h).

Next define

B = sup (s > 0: a unique solution exists on [a,s)}.

Then B > 0 and a unique solution, X1s sovs X of Problem P
can be constructed on [a,B). Specifically, for each t &€ (0,8),
define xi(t) = yi(t) where Y1s +++s ¥, 1s any solution valid
on [a,s) for some s > t.

Suppose (for contradiction) that B < « and there exists

§ > 0 such that
| x4 () - xJ(t)l >8 on [0,8) for each 1 and J # 1. (6)




It follows from Theorem 1 that each

rij(t) > §/2c.

Hence there exists a € [0,1) such that

Ivi(t - rij)l <a on [0,8) for each 1 and J # 1.

Using these results, we find from Egq. (3) that

d Y3 '), pounded [0,8) for each J
- = is bounded on s or .

Since 8 < =, this means that for some b € [0,1)

Ivj(t)l <b on [0,8) for each J.
Now, defining

x4 (8) = %iﬁ_ x4(t) and r;J(e) = %1§_ rij(t),

we obtain functions Xy5 eoe5 X having the same properties on

n
(a,B] as were originally assumed for $1s -++5 ¢, oON [a,0].
Here rgj(s) plays the role of P¥J(0). This means one can
construct a unique extenslon of the solution beyond t =8 (at
least for a short interval) just as we did originally beyond
t = 0. And ﬁhat contradicts the definition of 8.

So if B8 < =, 1t follows that (6) falls and a collision

occurs at B.

§
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